

The DOE-NETL Air Quality Research Program: Airborne Fine Particulate Matter (PM_{2.5})

William W. Aljoe

U.S. Department of Energy Office of Fossil Energy

National Energy Technology Laboratory (NETL)

Why DOE is Concerned About PM_{2.5}

- Goal 1 of Strategic Plan, DOE Office of Fossil Energy:
 - "eliminate environmental issues as a barrier to fossil fuel production and use, while maintaining the availability and affordability of fossil fuels."
- Coal power emissions and PM_{2.5} epitomize the complexities, challenges and tradeoffs
- Impetus for research: NAAQS for PM_{2.5}
 - -Annual average: 15μg/m³; Daily maximum: 65μg/m³

Coal Power & PM_{2.5} - Central Issues

- Primary vs. secondary PM_{2.5}
- Mass vs. composition
- Multiple regulatory/legislative drivers
- Impacts of coal plant emission reductions
 - NAAQS compliance (ambient PM_{2.5} mass)
 - Regional Haze
 - -Health effects

Average Annual PM_{2.5} Mass Concentrations (1995-2001)

1999 U. S. Primary PM_{2.5} Emissions

Source: National Air Pollution Emission Trends, 1999 (EPA-454/R-01-0049-80-009, March 2001)

Typical PM_{2.5} Composition in Western PA (Summer 1999)

Urban Site (avg. of 39 samples)

Rural Site (avg. of 10 samples)

PM_{2.5} Composition in Southeastern U. S. (10/98 - 09/01)

■ Other

■ Major Metal Oxides

□ Organic Matter

■ Elemental Carbon

Ammonium

■ Nitrate

■ Sulfate

Data provided by J. J. Jansen, Southern Company Services

1999 U.S. Secondary PM_{2.5} Precursor Emissions

PM_{2.5} NAAQS and Coal Plants Considerations for SIP Development

- Reductions in primary PM_{2.5} emissions will have minimal effect on compliance
- Reductions in coal plant emissions will not reduce carbon component of PM_{2.5}
- Widespread restrictions on SO₂ emissions are a virtual certainty in Eastern U. S.
- Year-round reductions of NOx emissions also likely in Eastern U. S.
 - -Why NOx?

Atmospheric SO₄ - NO₃ Interactions

Pittsburgh PM_{2,5} Composition

Overlapping Regulatory/Legislative Drivers

- NAAQS for Ozone: NOx SIP Call
- CAAA Title IV (Acid Rain)Phase II: SO₂ and NOx
- 1999 Regional Haze Rule
 - -BART provisions for power plants(SO₂)
- NSPS: primary PM and stack opacity
 - State/local reg's often more stringent than NSPS
 - May restrict release of acid gases (SO₃)
- Multipollutant legislation "Clear Skies Initiative"
 - -SO₂, NO_x, restrictions will affect PM_{2.5} SIPs
- Greenhouse gas emission restrictions?

What Will (Most Likely) Happen If We Reduce PM_{2.5} and Precursor Emissions from Coal Plants?

- SO₂ emission reductions will cause ambient PM_{2.5} sulfate to decrease
 - Less regional haze, "Clear(er) Skies"
- SO₂ and NOx emission reductions may or may not reduce ambient PM_{2.5} mass
 - -Substitution of NH₄NO₃ for (NH₄)₂SO₄
 - -NOx contribution from mobile sources
 - Significant carbon component of PM_{2.5}

What about Human Health Effects?

- Epidemiology suggests health will improve if PM_{2.5} mass is reduced, but ...
- "Heterogeneity" of epi studies (City A ≠ City B)
 - Some components are more harmful than others
- Atlanta ARIES study (EPRI)
 - No association between sulfates and adverse health effects
- Very little information on toxicity of sulfates & nitrates vs. other common PM_{2.5} components
- Public needs accurate assessment of benefits (visibility vs. health) resulting from power plant emission cuts

DOE-NETL PM_{2.5} Research Approach

 Assumption: mass-based PM_{2.5} NAAQS will remain in effect

- Relate emissions from coal-based energy production to concentrations and composition of ambient PM_{2.5}
- Inform decision-makers about energy management options for achieving PM_{2.5} and related air quality standards

Overview of DOE-NETL PM_{2.5} Research

- Ambient Monitoring & Analysis
- Emissions & Plume Characterization
- Predictive Modeling & Evaluation

Air Quality Research

- PM/Acid Gas Control Technology R&D
- NETL Environmental & Water Resources Website
 - http://www.netl.doe.gov/coalpower/ environment/

Ambient Monitoring and Analysis

Current Projects

Stuebenville Comprehensive Air Monitoring Project (SCAMP)

Ambient Monitoring Sites in Ohio River Valley

UORVP Sites

- Lawrenceville (Urban)
- O Holbrook (Rural)
- O Satellites

SCAMP Sites

- 1 Primary
 - Satellites

EPA/CMU Supersite

- **∧** Satellites
- **☆** NETL In-house site

Coal-fired power plants

Examples of Ambient Data Analysis Upper Ohio River Valley Project

Lawrenceville (Urban)

Holbrook (Rural)

 Primary Performer: Advanced Technology Systems, Inc.

PM_{2.5} TEOM Data, July 2000 Urban-Rural Site Comparison

Monthly Average TEOM PM_{2.5}, UORVP Sites

PM_{2.5} Mass vs. Wind Direction

July 2000

Urban site, 6-Hr TEOM Averages, μg/m³

PM_{2.5} TEOM vs. Sequential Filter Sampler

6-Hour Samples, Urban site, Summer 1999

Steubenville Comprehensive Air Monitoring Project (SCAMP)

Outdoor (Ambient) Study

- Primary performer: CONSOL, Inc.
- -Funding: DOE, EPA

Personal Exposure Study

- Outdoor vs. indoor vs. personal
 PM_{2.5} in Steubenville
- Primary Performer: Harvard School of Public Health
- Funding: Ohio Coal Development
 Office (OCDO), EPRI, NMA, API,
 AISI, CONSOL

Harvard Multi-pollutant Sampler - SCAMP

 O_3 , NO_2 , SO_2

PM_{2.5} Mass

EC, OC, SO₄

Outdoor

Indoor

Personal

Example of SCAMP Exposure Study Data

Pittsburgh Air Quality Study

Carnegie-Mellon University

- Leveraged with CMU/EPA Supersite
- DOE Project Title: "Atmospheric Aerosol Source-Receptor Relationships: The Role of Coal-fired Power Plants"

- All 3 components of Air Quality Research:
 - Advanced ambient monitoring at EPA "Supersite"
 - -Source characterization/profiling in Pittsburgh area
 - -Comprehensive regional modeling and data analysis

CMU-Pittsburgh Air Quality Study Objectives

CMU-Pittsburgh Air Quality Study

DOE Project Schedule

		2001										2002											2003										
	Α	M	J	J	Α	S	0	N	D	J	F	M	Α	M	J	J	Α	S	0	N	D	J	F	M	Α	M	J	J	Α	S	0	Ν	D
Ambient Monitoring and																																	
Analysis																		Г															
																		╙															
Source Characterization																																	1
Compile Inventories &				<u></u>			L		<u></u>									Ц															
Activity Levels				Ι	l	l		I		1	l	l						П															ì
Source Sampling w/Dilution																		<u>ш</u>		<u>Щ</u>		1											ì
Sampler																		Г															
																		╙															
Source Apportionment																		щ	<u> </u>	_		_	<u> </u>	_					il.				
Modeling																																	
																																	i.
Three-Dimensional																																	
Modeling																																	
Final Report																	,	_															*

Integrated Database and Analytical Tool

- New Award to Advanced Technology Systems, Inc.
 - Project start: August 2002
- Integrate data from all DOE-NETL sponsored monitoring sites
 - Include EPA, State, local site data if possible
 - Database structure coordinated with EPA, NARSTO, etc.
- Web-based querying, sorting, graphing, mapping downloading capabilities
 - Stakeholder group to define analytical capabilities

Emissions Characterization

Current and Recently-completed Projects

Characterization of Primary PM_{2.5} Emissions from Low-NOx Burners (*McDermott Technology Inc.*)

- Higher unburned carbon in ultra-low NOx PM
 - -Overall ash LOI: 4.3% vs. 1.3%
 - -PM_{2.5} carbon: 45% vs. 7%
- Decrease in ESP efficiency with ultra-low NOx
 - -99.3% vs 99.9%
 - -Associated with greater rapping re-entrainment
- Most volatile trace elements (As, Se) enriched in finest particles

CMU Dilution Sampler

CMU Dilution Sampler Development

- Characterize PM_{2.5} from 2-lb/hr Combustion Environmental Research Facility (CERF) at NETL-PGH
- Study formation of secondary fine organic aerosols
- Quantify sampling artifacts due to vaporization & condensation of semi-volatiles

Optimize system for later sampling at power plants

Modeling and Evaluation

Current and Recently-completed Projects

Predicted PM_{2.5} Aerosol for the Eastern US (July 1995)

Emissions Control Technology: PM, Acid Gas, & NOx

Primary PM Control Technology

- Advanced Hybrid Particulate Collector
 - Developed by UND-EERC
 - Combination baghouse & ESP
 - Marketed as Advanced Hybrid[™]
- Slipstream (9000 acfm) demo at Otter Tail Power, Big Stone, SD
 - -99.99% removal of PM all sizes
- Full-scale (475MW) demo
 - -Power Plant Improvement Initiative

Acid Gas Control Technology

- Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control
 - -Primary Performer: URS Group, Inc.
 - Environmental goal: reduce plume opacity & TRI emissions
 - Operational benefits: Control SO₃ upstream of air preheater
- Short-term (2 4 wk) field demonstrations
 - First Energy, Bruce Mansfield Plant, Shippingport, PA
 - Mg(OH)₂ sorbents provided best performance (~90% max)
 - -AEP Gavin Station, OH
 - DOE Tests: August 2001 (~75%; SCR effects)
 - AEP full scale installation: May 2002

DOE-FE Innovations for Existing Plants Program

Future NETL Efforts - Air Quality Research & PM_{2.5}

- Environmental transformations of mercury
 - Expand current monitoring, characterization, and modeling efforts to include Hg
 - Hg speciation changes in power plant plumes (EPRI)
- Impact of air emission reductions on watersheds
- Develop new multi-pollutant control technologies
- Evaluate need/potential for PM health research (FY04?)
 - Epidemiology studies in Pittsburgh area
 - -Toxicology of sulfates and primary PM from power plants

For Further Information

- NETL Environmental
 Water Resources
 Website
 - http://www.netl.doe.gov/ coalpower/environment/

- NETL PM_{2.5} Conference Proceedings April 9-10, 2002
 - -http://www.netl.doe.gov/publications/proceedings/02/PM25/

